

TO EVALUATE THE BIO-EFFICACY AND PHYTOTOXICTY OF POWDER FORMULATION OF BIODEWCON (*AMPELOMYCES QUISQUALIS* 2.00% WP) AGAINST POWDERY MILDEW (*SPHAEROTHECA FULIGINEA*) IN CUCUMBER CROP

T. Sivakumar, P. Balabaskar, P. Renganathan and K. Sanjeevkumar

Department of plant pathology, Faculty of Agriculture, Annamalai University, Annamalai Nagar 608002, Tamil Nadu.India E-mail :sivaindu_agri@yahool.co.in

Abstract

Powdery mildew fungi represent one of the most widely distributed and destructive groups of plant pathogens worldwide. Field grown cucurbit crops are often threatened by powdery mildews, which reduce yield and cause important economic losses. At present, the main management practices are the use of repeated fungicide applications. However, increasing public concerns about potential impact of pesticides on the environment, have necessitated alternative or complementary methods that are effective, reliable and environmentally safe. Biological control agents (BCAs) have received most of the attention because of their versatile modes of action to protect plants and their potential to be included in integrated management programmes. An evaluation was made of the ability of mycoparasite-based products Bio Dewcon (*Ampelomyces quisqualis* 2.00% WP) to manage powdery mildew disease, caused by (*Sphaerotheca fuliginea*). Further Bio-Dewcon promoted better yield and application of Bio-Dewcon(2.00 WP) recorded the least Powdery mildew incidence in cucumbers in both leaves and fruit could be successfully employed as an eco-friendly strategy for the management of Powdery mildew disease of cucumber Further, application of Bio-Dewcon showed no phytotoxic symptoms and was found safe to the environment as it did not affect the beneficial insects

Keywords: cucumber crop, Powdery mildew (Sphaerotheca fuliginea), Bio-Dewcon Ampelomyces quisqualis.

Introduction

Cucumber plants are attacked by several pathogens causing considerable reduction in its production. Powdery mildew of cucumber is caused by (Sphaerotheca fuliginea) is a potent production constraint during cool and dry weather conditions. Cool period that follows monsoon and during winter (Rabi) in both seasons it is a serious problem. Most of the cucumber is highly susceptible to powdery mildew. In many cucumber-growing areas powdery mildew has become severe issues. It is widespread and caustic diseases in semi arid regions, where high humidity is ubiquitous (Ahmed et al., 2000 and El-Nagger et al., 2012). Powdery mildew developed quickly cucumber and large number of spores can be produced in a short time (Reuveni and Raviv, 1997). Losses caused by powdery mildew on cucumber may reach to 30- 80% of yield (El-Nagger et al., 2012). Although powdery mildew could be controlled by chemical fungicides intensive use of fungicide is regarded undesirable both for environmental pollution and development of resistance populations of the pathogen (Pimentel et al., 1992 and Chen et al., 2007). Increasing concerns for public health boost researcher to find out eco-friendly safe strategies to contr plant diseases which, are applied in repetition procedures. It is also possible tousle bio control preparations to control of the pathogen (Eladetal, 1995). However, One important aspirant for biological control of powdery mildew is new bioformulations Bio Dewcon (Ampelomyces quisqualis 2.00% WP) effective against Powdery mildew (Sphaerotheca fuliginea). Ampelomyces quisqualis Ces.: Schlidt. from Oidium sp. that infects Catha edulis in Israel. This specifically parasitizes the powdery mildew fungi. Both mycelium and fruiting bodies are colonized. It could antagonize by parasitism several powdery mildew fungi belonging to the genera Oidium, Erysiphe, Podosphaera, Uncinula and Leveillula (Sztejnberg et al., 1989). The purpose of the present research work was to evaluate the Bioefficacy and phytotoxicty of powder formulation of Bio Dewcon (*Ampelomyces quisqualis* 2.00% WP) against Powdery mildew (*Sphaerotheca fuliginea*) in cucumber. The following observations were made by recorded on Percent Disease incidence (PDI), Yield (q /ha), Phytotoxicity and Parasite and predator as per the standard procedure.

Materials and Methods

Field trial was conducted at makkanur (Dharmapuri district) in Tamil Nadu during January, 2018 - March, 2018 the well-known endemic area for the occurrence of Powdery mildew of cucumber (*Sphaerotheca fuliginea*) disease of cucumber. The Hybrid cucumber Malini (Seminis ma susceptible variety to Powdery mildew, was used for this study. All the agronomical practices were strictly adopted during the cropping period as per the crop production manual for horticultural crops published by the Department of Horticulture, Government of Tamil Nadu.

The Percent Disease incidence (PDI is recorded before the treatment imposition and Three applications: 25 days after transplanting and 10days after 1st spray and 10 days after second spray using a knapsack sprayer of the Bio-Dewcon. The yield, Phytotoxicity and parasite and predator population were recorded at the time of final harvest

Treatment details

Treatments	Product	Dosage kg /ha)	Spray volume (in liter)
T1	Bio-Dewcon	3.0 kg	500
T2	Bio-Dewcon	4.0kg	500
T3	Bio-Dewcon	5.0 kg	500
T4	Hexaconazole	0.1%	500
T5	Control	-	-

3812

To evaluate the bio-efficacy and phytotoxicty of powder formulation of biodewcon (*Ampelomyces quisqualis* 2.00% wp) against powdery mildew (*Sphaerotheca fuliginea*) in cucumber crop

Method and date of foliar spray application

As per the treatment schedule, the product was mixed with required quantity of water and sprayed with a high volume knapsack sprayer. The first spray was given 25 days after the sowing of the crop when the weather conditions were favourable for the powdery mildew disease. Another spray was given 10 days after the first spray. Third spray was given 10 days after second spray.

First Spray– 11.02.2018 2nd Spray – 22.02.2018

3rd Spray - 04.03.2018

Assessment of Powdery mildew diseases:

The data pertaining to the incidence of powdery mildew disease the 0-4 scale (0-Healthy-nil powdery growth; 1- trace to 25 per cent; 2- 26 to 50%; 3-50 to 75% and 4- 76-100% leaf area having powdery growth) developed by Rao (1991) was used. The percent disease index (PDI) was estimated using the formula suggested by McKinney (1923).

Scale	Powdery mildew incidence
0	Healthy or no infection
1	trace to 25 per cent infection
2	26 to 50% infection
3	50 to 75% infection
1	76-100%nfection

Fruit yield:

The cucumber were harvested periodically and the yield per hectare was calculated and recorded as tonnes/ha.

Assessment of phytotoxicity

Cucumber plants were observed for phytotoxic symptoms (If any) such as chlorosis, necrosis, scorching, epinasty and hyponasty on 1, 3, 5, 7 and 10 days after treatment of powder formulation of Bio-Dewcon (*Ampelomyces quisqualis* 2.00 WP) and grading was done as per CIB guidelines adopting 0 - 10 scale. Leaf injury was graded based on visual rating on a 1-10 scale (CIB, 1989)

1 - 1 – 10% of leaf injury	6 - 51.1 - 60% of leaf injury
2 – 11.1 – 20% of leaf injury	7 – 61.1 - 70% of leaf injury
3 - 21.1 – 30% of leaf injury	8 - 71.1 – 80% of leaf injury
4 - 31.1 - 40% of leaf injury	9 - 81.1 - 90% of leaf injury
5 - 41.1 - 50% of leaf injury	10 - 91.1 - 100% of leaf injury

Effect on Natural Enemies

The population of the natural enemies viz., Spiders, Dragon fly, Wasp and damsel fly was also assessed following standard procedures in the treatment ofpowder formulation of Bio-Dewcon (*Ampelomyces quisqualis* 2.00 WP) and untreated plots and recorded.

Statistical Analysis:

The data collected were subjected to statistical analysis using computer aided IRRISTAT Version 92 software developed by the International Rice Research Institute, Philippines.

Results

Powdery mildew disease

In general, all the new bioformulations of Bio-Dewcon (*Ampelomyces quisqualis* treatments showed significant inhibitory effect in reducing the powdery mildew disease when compared to control. Among the various treatments, the treatments with Bio-Dewcon 2.00 WP) @ 5.0 kg /ha proved very effective and revealed supremacy in controlling the Powdery mildew disease of Cucumber.

The powdery mildew disease in plants at 35day and45 days after spray and recorded the least per cent disease index 10.92 and 14.32. This was followed by treatment Bio Dewcon 2.00 WP4kg/ha, Bio Dewcon 2.00 WP 3.kg/ha and market sample of Hexaconazoleand were on par with each other.

While in the untreated control the maximum PDI of 20.17 and 24.19 was recorded (Table 1).

Fruit Yield

The results showed that all the treatments with new bioformulations of Bio-Dewcon (*Ampelomyces quisqualis*) recorded higher yields when compared to control. However, among all treatments, Bio Dewcon 2.00 WP5kg/ha, recorded the maximum fruit yield with 18.42t/ha which was at par with Bio Dewcon 2.00 WP4kg/ha 17.03t/ha. The treatment with Market sample of Hexaconazole yielded 18.12 t/ha the untreated control recorded the lowest fruit yield with 12.79t/ha (Table 2).

Phytotoxicity

Periodical observations were made for the phytotoxic effect if any due to treatment with new bioformulations of Bio-Dewcon (*Ampelomyces quisqualis* in field conditions. There was no phytotoxic symptoms *viz.*, leaf tip injury, leaf surface injury, vein clearing, necrosis, epinasty and hyponasty in all the concentrations of Bio-Dewcon treated plots and during the entire cropping period (Table 3).

Effect on the population of natural enemies

It was conspicuous to note that the occurrence of natural enemies spiders, Dragon fly, Damsel fly and wasps population increased appreciably in Bio-Dewcon (*Ampelomyces quisqualis*) treated plots as compared to chemical treatment. Observation of natural enemy population throughout cropping period has indicated that the plants treated with Bio-Dewcon attracted the natural predators and parasites in especially, the spiders population was found increased in Bio-Dewcon treated plots. Also appreciable number of Dragon fly and Damsel fly were observed with the Bio-Dewcon treated plots when compared with the plots treated with Hexaconazole (Table 4).

Discussion

Application of new bioformulations of Bio-Dewcon (Ampelomyces quisqualis (2.00 WP) was found to be effective against Powdery mildew (Sphaerotheca fuliginea). Further Bio-Dewcon promoted better yield. Further, application of Bio-Dewcon showed no phytotoxic symptoms and was found safe to the environment as it did not affect the beneficial insects. Similar results were also reported by several workers, The first significant trial using Ampelomyces was reported by Jarvis and Slingsby (1977) who used conidial suspensions of the mycoparasite to control cucumber powdery mildew in greenhouse trials successfully. In most experiments, Ampelomyces was sprayed onto infected plants as a conidial suspension and the applications were repeated several times during the season to ensure a high level of control (e.g., Sztejnberg et al., 1989; Philipp et al., 1990). Ampelomyces has been shown to be compatible with a large number of fungicides used in the control of powdery mildews, such as triforine, quinomethionate (Sundheim, 1982; Shishkoff & McGrath, 2002), myclobutanil (Shishkoff & McGrath, 2002. AQ10 has also been shown not to interfere with the activity of another fungal biocontrol product,

Trichodex, when co-inoculated onto cucumber for dual control ofpowdery mildew and grey mould (Elad et al ., 1998). The effectiveness of this mycoparasite was shown on young, newly infected leaves and on older leaves. Evaluation of the degree of parasitisation of S. fusca thallu by the mycoparasiter revealed an even better degree of disease control. This resulted in healthier leaves, as described previously by Abo-Fouletal.(1996), who showed that A. quisqualis-treated leaves showed improved photosynthesis ability. Control of the powdery mildews by AQ10was reported previously (Hofsteinand Fridlender, 1994; Pasini et al.,1997). Rose powdery mildew is another major problem in greenhouse systems. Verhaar et al. (1999) compared the efficacy of five fungal biocontrol agents (A. quisqualis, Aph. album, Pseudozyma rugulosa, T. minor Nyland and V. lecanii) against this pathogen at different RHs, and found that only one isolate of V. lecanii was able to control the disease efficiently at a RH B 100%. In conclusion of bioformulations of application new of Bio-Dewcon(Ampelomyces quisqualis (2.00 WP) was found to be effective against Powdery mildew (Sphaerotheca fuliginea). Further Bio-Dewcon promoted better yield and application of Bio-Dewcon (2.00 WP) recorded the least Powdery mildew incidence in cucumbers in both leaves and fruit could be successfully employed as an eco-friendly strategy for the management of Powdery mildew disease of cucumber Further, application of Bio-Dewcon showed no phytotoxic symptoms and was found safe to the environment as it did not affect the beneficial insects

Table 1: Bioefficacy of BioDewcon (Ampelomyces quisqualis 2% WP) on powdery mildew of cucumber

Tuestment			PDI for po	wdery mildev	% reduction over control							
No.	Treatment	Treatment Dosage		Treatment Dosage		TreatmentDosage25days after 1st35 Days after 2nd sprayspraysprayspray		35 Days after 2 nd spray	45 days after 3 rd spray	35 Days after 1 st spray	45 days after 2nd spray	
T1	Bio Dewcon	3.0 kg	4.0	14.43	18.31	28.45	26.13					
T2	Bio Dewcon	4.0 kg	5.0	12.07	16.72	40.65	32.64					
Т3	Bio Dewcon	5.0 kg	5.0	10.92	14.32	45.86	42.23					
T4	Hexaconazole	0.1%	6.0	8.82	12.02	56.27	51.51					
T5	Control	-	5.0	20.17	24.79	-	-					
	CD @ 5%		NS	2.7	2.8							

Treatment No.	Treatments	Dosage (kg ha ⁻¹)	Yield per plot (kg per 40 m ²	Yield (in t ha ⁻¹)	% Yield increase over control
1	Bio Dewcon	3.0 kg	61.27	15.92	19.66
2	Bio Dewcon	4.0 kg	69.04	17.03	24.89
3	Bio Dewcon	5.0 kg	71.23	18.42	30.56
4	Hexaconazole	0.1%	73.47	18.44	30.63
5	Control	-	51.61	12.79	-
	SE		1.92	0.25	
	CD @ 5%		4.03	0.50	

			Phy	totoxicity par	ameters obser	ved						
	Docogo	(mean data recorded at 10, 15, 20 and 30 days after each application)										
Treatments	(kg/ha)	Leaf injury	Leaf injury	Leaf injury	Leaf injury	Leaf injury	Leaf injury					
		on tips/ surface	on tips/ surface	on tips/ surface	on tips/ surface	on tips/ surface	on tips/ surface					
Bio Dewcon	3.0 kg	Nil	Nil	Nil	Nil	Nil	Nil					
Bio Dewcon	4.0 kg	Nil	Nil	Nil	Nil	Nil	Nil					
Bio Dewcon	5.0 kg	Nil	Nil	Nil	Nil	Nil	Nil					
Hexaconazole	0.1%	Nil	Nil	Nil	Nil	Nil	Nil					
Control	-	Nil	Nil	Nil	Nil	Nil	Nil					
Bio Dewcon	12.0	Nil	Nil	Nil	Nil	Nil	Nil					

Table 3: Phytotoxicity evaluation of ofBioDewcon (Ampelomyces quisqualis 2% WP) on cucumber

Table 4: Effect Bio-Dewcon (Ampelomyces quisqualis2.00 % WP)) on the population natural enemies)

T No	Treatments	*Spi	ders (N	s (Nos.) *Dragon fly (Nos.) *Damsel fly (Nos.)		*Dragon fly (Nos.)			Nos.)	*Wasp (Nos.)			
1.110	Treatments	Before	After	After	Before	After	After	Before	After	After	Before	After	After
		I SA	I SA	II SA	I SA	I SA	II SA	I SA	I SA	II SA	I SA	I SA	II SA
T1	Bio-Dewcon 3.0 kg	8.43	8.60	8.63	1.57	1.65	1.72	2.40	2.45	2.73	2.31	2.40	2.49
T2	Bio-Dewcon 4.0 kg	8.40	8.70	8.76	1.65	1.69	1.79	2.49	2.55	2.63	2.38	2.53	2.56
Т3	Bio-Dewcon 5.0 kg	8.43	8.81	8.82	1.45	1.75	1.1.96	2.40	2.65	2.99	2.41	2.70	2.83
T4	Ridomil	8.42	7.28	7.62	2.50	1.45	1.46	2.63	1.30	2.28	2.40	1.41	1.42
T5	Control	8.45	7.22	7.40	1.1.56	1.22	1.20	2.51	1.50	2. 70	2.38	1.47	1.56

Acknowledgements

The authors are thankful to M/s T. Stanes & Company Private Limited, Coimbatore for funding and providing the valuable suggestions during my research period

References

- Abo-Foul, S.; Raskin, V.I.; Sztejnberg, A. and Marder, J.B. (1996). Disruption of chlorophyllorganization and function in powdery mildew-diseased cucumber leaves and its control by the hyperparasite *Ampelomyces quisqualis*. Phytopathology, 86: 195 199.
- Ahamed, S.; Narain, U.; Prajapati, R.K. and Lal, C. (2000). Management of downy mildew of cucumber. Annals of Plant Protection Sci., 8: 254-255.
- Chen, W.J.; Delmotte, F.; Richard-Cervera, S.; Douence, L.; Greif, C. and Corio-Costet, M.F. (2007). At least two origins of fungicide resistance in grapevine downy mildew populations. Appl. Environ. Microbiol. 73: 5162–5172.
- Elad, Y.; Kirshner, B. and Sztejnberg, A. (1998). Management of powdery mildew and gray mold of cucumber by *Trichoderma harzianum* T39 and *Ampelomyces quisqualis* AQ10. BioControl 43, 241 251. EMMONS, C.W. (1930) *Cicinnobolus cesatii*, a study in host-parasite relationships. Bulletin of the Torrey Botanical Club, 57: 421 439.
- Elad, Y., Malathrakis, N.E. and Dik, A.J. (1995). Biological control of Botrytis incited diseases and powdery mildews in greenhouse crops Crop Protection, 15: 224–240.

- El-Naggar, M. A., M. H. El-Deeb and Seham, S. Ragab 2012. Applied approach for controlling powdery mildew disease of cucumber under plastic houses. Pak. J. Agril. Eng. Vet. Sci. 28:54-64.
- Hofstein, R. and Fridlender, B. (1994) Development of production, formulation and delivery systems, in Brighton Crop Protection Conference, Pest and Diseases, British Crop Protection Council, Farnham, UK, 3: 1273 1280
- Pasini, C.; D'aquila, F.; Curir, P. and Gullino, M.L. (1997). Effectiveness of antifungal compounds against rose powdery mildew (*Sphaerotheca pannosa* var. rosae) in glasshouses. Crop Protection, 16: 251 256.
- Philipp, W.D.; Beuther, E.; Hermann, D.; Klinkert, F.;
 Oberwalder, C.; Schmidtke, M. and Straub, B. (1990)
 Zur Formulierung des Mehltauhyperparasiten
 Ampelomyces quisqualis Ces. Zeitschrift f`ur
 Pflanzenkrankheiten und Pflanzenschutz 97: 120 132.
- Pimentel, D.; Acquay, H.; Biltonen, M.; Rice, P.; Silva, M.; Nelson, J.; Lipner, V.; Giordano, S.; Horowitz, A. and D'Amore, M. (1992). Environmental and economic costs of pesticide use. Bioscience 42: 750–760.
- Reuveni, R. and Raviv, M. (1997). Control of downy mildew in greenhouse-grown cucumbers using blue photo selective polyethylene sheets. Plant Dis. 81: 999-1004
- Shishkoff, N. and Mcgrath, M.T. (2002). AQ10 biofungicide combined with chemical fungicides or AddQspray adjuvant for control of cucurbit powdery mildew in detached leaf culture. Plant Disease 86: 915-918.

- Sundheim, L. and Krekling, T. (1982). Host-parasite relationships of the hyperparasite *Ampelomyces quisqualis* and its powdery mildew host *Sphaerotheca fuliginea*. Journal of Phytopathology 104: 202-210.
- Sztejnberg, A.; Galper, S.; Mazarand, S. and Lisker, N. (1989). *Ampelomyces quisqualis* for biological and

integrated control of powdery mildewinIsrael. *J.Phytopathol*.124: 285–295.

Verhaar, M.A., Kerssies, A. & Hijwegen, T. (1999) Effect of RH on mycoparasitism of rose powdery mildew with and without treatments with mycoparasites. Zeitschrift f^{*}ur Pflanzenkrankheiten und Pflanzenschutz 106, 158 165.